基本思路分析大家好,今天给大家分享一下如何把Keras框架训练生成模型部署到OpenVINO平台上实现推理加速。要把Keras框架训练生成的h5模型部署到OpenVINO上,有两条技术路线: 选择一:把预训练权重文件h5转换pb文件,然后再转为OpenVINO可以解析的IR文件 选择二:把预训练权重文件h5转为ONNX格式文件,然后OpenVINO就可以直接读取跟使用了。 很显然,第一条技术路线中
模型输入与输出OpenVINO 2020R04版本的官方模型库中有两个人脸检测模型标号分别为: face-detection-0105 – MobileNetv2 + FCOS face-detection-0106 – RestNet152 + ATSS 这里需要注意一下,FCOS与ATSS模型检测头输出跟SSD模型不同,官方支持的IR文件有两个输出数据分别是: boxes: [Nx5], la
模型解释OpenVINO支持场景文字检测是基于MobileNet的PixelLink模型,该模型有两个输出,分别是分割输出与bounding Boxes输出,结构如下: 下面是基于VGG16作为backbone实现的PixelLink的模型结构: 输入格式:1x3x768x1280 BGR彩色图像 输出格式: name: “model/link_logits_/add”, [1x16x192x32
模型介绍之前没有注意到,最近在OpenVINO2020R04版本的模型库中发现了它有个手写数字识别的模型,支持 or . 格式的数字识别与小数点识别。相关的模型为: handwritten-score-recognition-0003 该模型是基于LSTM双向神经网络训练,基于CTC损失, 输入格式为:[NCHW]= [1x1x32x64] 输出格式为:[WxBxL]=[16x1x13] 其中13
人脸3D点云提取网络介绍(facemesh) 2019年的时候有一篇在移动端实现3D点云实时提取的论文,被很多移动端AR应用作为底层算法实现人脸检测与人脸3D点云生成。该论文名称为《Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs》,github有pytorch版本的实现地址如下: https://githu