应用 | OpenCV + OpenVINO实现人脸表情识别
好久没有写点OpenCV + OpenVINO的应用了,前几天上课重新安装了一下最新OpenVINO2020.3版本,实现了一个基于OpenCV+OpenVINO的Python版本人脸表情识别。100行代码以内,简单好用! 人脸检测人脸检测使用了OpenCV中基于深度学习的人脸检测算法,实现了一个实时人脸检测,该模型还支持OpenVINO加速,所以是非常好用的,之前写过一篇文章专门介绍OpenCV

头部姿态评估模型OpenVINO支持头部姿态评估模型,预训练模型为:head-pose-estimation-adas-0001,在三个维度方向实现头部动作识别,它们分别是: pitch是俯仰角,是“点头“ yaw是偏航角,是‘摇头’ roll是旋转角,是“翻滚 它们的角度范围分别为:YAW [-90,90], PITCH [-70,70], ROLL [-70,70] 这三个专业词汇其实是来自无

模型介绍OpenVINO支持Mask-RCNN与yolact两种实例分割模型的部署,其中Mask-RCNN系列的实例分割网络是OpenVINO官方自带的,直接下载即可,yolact是来自第三方的公开模型库。 这里以instance-segmentation-security-0050模型为例说明,该模型基于COCO数据集训练,支持80个类别的实例分割,加上背景为81个类别。 OpenVINO支持部

OpenVINO不仅通过其IE组件实现加速推理,其提供的预训练库还支持各种常见的图像检测、分割、对象识别等的计算机视觉任务。前面小编写过一系列的文章详细介绍过OpenVINO的各种应用,可以看这里回顾一下: 这里分享一下如何通过OpenVINO提供的行人检测与行人属性识别模型实现一个实时的视频行人检测与属性识别的演示程序。先看一下效果: 模型:模型来自OpenVINO官方提供的预训练模型库 行人检

人脸检测模型OpenVINO的模型库中有多个人脸检测模型,这些模型分别支持不同场景与不同分辨率的人脸检测,同时检测精度与速度也不同。下面以OpenVINO2020 R04版本为例来逐一解释模型库中的人脸检测,列表如下: 在这里插入图片描述从列表中可以看出骨干特征网络主要是MobileNetv2与SqueezeNet两种支持实时特征网络,ResNet152是高精度的特征网络,检测头分别支持SSD、F
